If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2=-3u
We move all terms to the left:
u^2-(-3u)=0
We get rid of parentheses
u^2+3u=0
a = 1; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*1}=\frac{-6}{2} =-3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*1}=\frac{0}{2} =0 $
| 2(2b+b)×3=180 | | -18=3(-1z+6)+2z | | 4x-2+5=x+2x-2 | | 7+5x=11-3x | | 8x46=8x40 | | 15x+20=20x-15 | | 48=21/2×i+20 | | 6x+9x=11x-12-7+19 | | 15x+8=−7 | | 62x+55=180 | | 10x+12=2(5x+3)+6 | | 10x-3x=3+5-9x | | 86-x=62 | | 15x+8=−715x+8=-7 | | 5y/2-9-2y/3=2 | | 15w+65=120 | | 0=7(x-5) | | 3x+5=2x+8=2x+17 | | 5t=3t+8 | | 3(3x-1)=10x+3 | | 50(36n-20)=30n+50 | | 180-2x=x | | (X+7)^2+(y+8)^2=64 | | -9=4y=7y | | 5x−3+2x=x+7+6x | | 238.57=-16^2t+65t | | -3x-3x=-5x+x+1 | | 2=2-6s-4s | | (X+2)^2+(y-3)^2=183 | | 218x-90=-10x+174 | | 9x-36=x+12 | | 2/5(n)+1/10=1/2(n+4) |